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Abstract
This project has assessed the ability of coupled climate models to replicate the regional atmospheric conditions observed over the period 1961–2000. Atmospheric predictor time-series – extracted from historically-forced coupled climate model runs and stochastically downscaled multi-site rainfall series – reproduce the overall distributions seen in the observed record, but show only a limited correspondence with the observed temporal evolution of mean climatology. It is beyond the scope of this project to determine whether these deficiencies result from GCM structural or parameterisation errors or from incorrect or insufficient forcing, and so we cannot conclusively say whether the results lower confidence in using these GCMs for climate change projections. However, the results do show that all four climate models perform reasonably well, and that the CSIRO Mk3.5 most closely replicates the NCEP/NCAR Reanalysis (NNR) predictors, and thus produces downscaled rainfall most similar to that observed. An overarching caveat is the assumption that the NNR predictors used are consistently reliable for the 1961–2000 analysis period. 
Significant research highlights, breakthroughs and snapshots

· Overall, the mean climatology of the predictors extracted for statistical downscaling from three selected coupled climate models (GFDL 2.0, CSIRO Mk3.5, and MRI) and CCAM (atmospheric model forced by CSIRO Mk3.0 SSTs and far field winds) corresponds to that of the NCEP/NCAR Reanalysis (NNR) predictors. 
· Despite this overall correspondence, biases in the GCM predictor distributions do result in biases in downscaled station rainfall for current climate. The CSIRO Mk3.5 downscaled current climate results correspond most closely to the observed station rainfalls. 
· The observed trends in the NNR predictors for 1961–2000 are, in most cases, larger than the trends produced by the GCMs for the same period.

· Comparing GCM and NNR downscaled weather-state frequencies shows biases in magnitude and trend for several GCMs. The CSIRO Mk3.5 weather-state magnitude and trends show the greatest similarities to observations.
Statement of results, their interpretation, and practical significance against each objective
Objective 1: Compare spatio-temporal properties and temporal evolution of predictors extracted from coupled climate model historical runs with those of reanalysis data to assess how well climate models replicate observed characteristics.
The calibration of Nonhomogeneous Hidden Markov Model (NHMM) stochastic downscaling models, as described in Project 1.3.4, involved selecting atmospheric predictors relating multi-site daily rainfall patterns (NHMM weather states) to the large-scale atmospheric drivers of the observed daily rainfall variability. The selected NHMM predictors in summer (NDJFM) were mean sea-level pressure, 700 hPa dew-point temperature depression (DTd), and East–West 500 hPa geopotential height (GPH) gradient. The NHMM predictors for winter (AMJJASO) were North–South mean sea-level pressure gradient, 700 hPa and 850 hPa DTd, and North–South 700 hPa GPH gradient. These predictors have been extracted from selected GCMs, as described in the Summary of methods and modifications section below, for the 1961–2000 period. A comparison of these GCM predictors with the NNR-derived predictors (Kalnay et al. 1996) used in NHMM calibration and assessment (Projects 1.3.4 and 1.4.3) is presented here. 
The overall distributions of the predictors extracted from the coupled climate model historical runs correspond to those of the NNR data (Figure B1 in Appendix B). Different GCMs have different levels of biases for different predictors, with no one GCM consistently better than the rest. The Mk3.5, however, does better at reproducing the winter DTd predictors (Figure B1(e,f)).
The temporal evolution of the predictors over the 1961–2000 period is shown in Figure B2 (Appendix B). Tables 1 and 2 summarise the linear trends (slope of the line of best fit) of the predictors for summer and winter. The strong increasing trend for NNR 700 hPa DTd, indicating a drying of the middle atmosphere, is not replicated by the GCMs. Of the GCMs, Mk3.5 has the largest trend in 700 hPa DTd (summer and winter) and for 850 hPa DTd (winter) it is the closest at replicating the NNR trend (0.002605 compared to 0.002148). 
Table 1.  Linear trends in 1961–2000 summer NHMM predictors
	
	SLP
	DTD @ 700 hPa
	GPH E–W @ 500 hPa

	CCAM
	0.000609
	–0.000195
	–0.000508

	GFDL
	0.000125
	0.001085
	–0.000226

	Mk3.5
	0.000456
	0.001967
	–0.001569

	MRI
	0.000616
	0.000571
	0.000971

	NNR
	0.002376
	0.008698
	0.004791


Table 2.  Linear trends in 1961–2000 winter NHMM predictors
	
	SLP N-S
	DTD @ 700 hPa
	DTD @ 850 hPa
	GPH N–S @ 700 hPa

	CCAM
	–0.000232
	–0.000173
	–0.000719
	–0.002163

	GFDL
	–0.000077
	0.001057
	0.001389
	0.001668

	Mk35
	–0.000201
	0.001807
	0.002605
	–0.000145

	MRI
	–0.000119
	0.000496
	–0.000653
	0.001676

	NNR
	0.000208
	0.008494
	0.002148
	0.004455


Objective 2: Assess similarities and differences in daily weather state and multi-site rainfall series, obtained from downscaling coupled climate model historical runs, to those obtained previously when downscaling from NCEP/NCAR and ERA-40 reanalyses.
Tables 3 and 4 presents the simulated weather-state frequencies and standard error differences obtained from downscaling the NNR and GCM predictor series, for summer and winter respectively. The standard error differences were calculated using a ‘jack-knife’ procedure – leaving out one year at a time to determine the variance in weather-state frequency estimates. The numbers in brackets (after the frequencies) are the number of standard errors between the downscaled simulations using NNR (i.e. observed) predictors and the GCM predictors for 1961–2000, i.e. they assess how well the GCM current climate downscaled results reproduce the observed weather-state frequencies. This clearly highlights how the predictor biases, as discussed above, come together to produce under- or over-estimation biases in the frequencies of the weather states, and thus the downscaled rainfall simulations. State 2, which is wet in both the summer and winter NHMM, is under-estimated by most GCMs with the exception of Mk3.5. This results in under-estimation biases for downscaled station rainfall.
Table 3.  Summer downscaled weather-state mean frequencies (and GCM standard errors, in brackets, relative to NNR) for 1961–2000
	State
	NNR
	CCAM
	GFDL
	MK35
	MRI

	1
	0.542
	0.547 (0.28)
	0.543 (0.05)
	0.525 (0.92)
	0.561 (1.00)

	2
	0.087
	0.046 (5.65)
	0.064 (2.96)
	0.083 (0.41)
	0.051 (4.84)

	3
	0.095
	0.088 (1.05)
	0.087 (1.47)
	0.100 (0.90)
	0.081 (2.36)

	4
	0.056
	0.064 (2.83)
	0.069 (4.17)
	0.055 (0.19)
	0.067 (4.13)

	5
	0.220
	0.254 (3.14)
	0.237 (1.51)
	0.237 (1.66)
	0.239 (1.87)


Table 4.  Winter downscaled weather-state mean frequencies (and GCM standard errors, in brackets, relative to NNR) for 1961–2000 
	State
	NNR
	CCAM
	GFDL
	MK35
	MRI

	1
	0.437
	0.449 (0.93)
	0.439 (0.11)
	0.439 (0.10)
	0.450 (0.68)

	2
	0.125
	0.100 (3.93)
	0.088 (4.78)
	0.117 (0.69)
	0.104 (2.32)

	3
	0.120
	0.114 (1.38)
	0.126 (0.73)
	0.098 (3.70)
	0.127 (0.78)

	4
	0.190
	0.218 (5.97)
	0.219 (4.00)
	0.206 (2.27)
	0.206 (2.23)

	5
	0.128
	0.118 (1.70)
	0.129 (0.11)
	0.140 (1.41)
	0.113 (1.94)


Correspondingly, Figures 1 and 2 compare the summer and winter (smoothed) weather-state time-series from downscaling NNR and the four GCMs for 1961–2000. The relative performance in reproducing the magnitudes and trends in each weather-state varies across the GCMs. Evident biases include the under-estimation of Summer and Winter State 2 by three of the GCMs and over-estimation of Winter State 4, although in percentage terms it is only a small bias of 1.6–2.9% (Table 4). Again, overall, the Mk3.5 does the best job of reproducing the magnitude and trends of the weather states. 
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Figure 1.  Smoothed weather-state time-series for summer (NDJFM) NHMM.
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Figure 2.  Smoothed weather-state time-series for winter (AMJJASO) NHMM.
The inconsistent differences in the GCM predictors produce uncertainties when they are statistically downscaled to produce daily rainfall simulations. Given the nonlinear relationship between the atmospheric predictor inputs and generated multi-site daily rainfall series outputs of the NHMM (Hughes et al. 1999), there is no simple way to assess the relative contribution of each individual predictor bias on the resultant downscaled rainfall simulations. The overall temporal trend in statistically downscaled daily rainfall simulations, as an areal mean, is shown in Figure C1 (Appendix C). While the coupled GCMs are forced with the long-term trends in greenhouse gases etc. (Table 6), they are free to evolve their own climatology and so are not expected to produce peaks and troughs in phase with the observed climatology. However, it is hoped that they capture the observed long-term variability and trends. For example, downscaled rainfall from GFDL underestimates interannual variability, whereas Mk3.5 better represents the overall variability and trend. 
Table 5 presents the range (across the 30 stations) of the error in reproducing the mean 1961–2000 seasonal rainfall amounts when downscaling the GCMs. The Mk3.5 results stand out, given the low bias for summer (NDJFM) compared to the other GCMs. CCAM and MRI perform comparatively poorly for summer. The winter (AMJJASO) results for the Mk3.5 and MRI models are comparable, with the CCAM winter slightly worse. Given that runoff is winter dominated in the Murray–Darling Basin, this gives some confidence that GCM downscaled rainfall for current climate could be used in hydrological modelling as long as these biases are taken into account when comparing observed data with projected results.
Table 5.  Range in GCM downscaled station seasonal rainfall 
for 30 MDB stations (% relative to NNR, 1961–2000)
	Season
	CCAM
	GFDL
	Mk3.5
	MRI

	NDJFM
	0.69–0.91
	0.80–0.94
	0.95–1.07
	0.70–0.90

	AMJJASO
	0.87–0.94
	0.80–0.93
	0.93–1.00
	0.93–1.02


Summary of methods and modifications (with reasons)

· Three coupled GCMs used in the IPCC 4AR, the CSIRO Mk3.5 (Australia), GFDL CM2.0 (USA), and MRI CGCM2.3.2a (Japan) (Table 6), were selected based on the availability of daily output required for the previously calibrated statistical downscaling models and assessment of their reproduction of the mean climatology of these required predictors (as reported in Project 2.1.2). An additional climate model, the CCAM atmospheric model, was also used. The CCAM run had far-field ‘nudging’ and sea-surface temperatures imposed by a Mk3.0 run, and had a variable grid run at a finer horizontal resolution over Australia. 
Table 6.  Selected* coupled model historical (1961–2000) runs and forcings
	Model Name
	Originating Group(s) and Country
	GHG
	Direct sulfate
	Ozone
	Solar & volcano

	CSIRO Mk3.5
	CSIRO Marine and Atmospheric Research, Australia
	Y
	Y
	
	

	GFDL CM2.0
	NOAA Geophysical Fluid Dynamics Laboratory, USA
	Y
	Y
	Y
	Y

	MRI CGCM2.3.2a
	Meteorological Research Institute, Japan
	Y
	Y
	Y
	Y


* Selection based on the results of Project 2.1.2. 

· The daily predictor time-series for the 20th century runs (1961–2000) of these selected GCMs were extracted and used to drive the statistical downscaling models calibrated in Project 1.3.4, producing 100 stochastic realisations of the daily rainfall series at the 30 stations, conditional on the single predictor time-series from each coupled climate model.
· Initial assessment showed these multi-site precipitation simulations had an underestimation bias compared to simulations from downscaling NNR predictors for the same period. Calibration of the statistical downscaling model uses ‘centred’ historical predictors, i.e. the overall mean of each predictor is subtracted to give a predictor series with zero mean. Equivalent ‘centring’ has to be applied to the coupled climate model predictors so that they also have zero mean for the corresponding period. One hypothesised cause of the bias was the small overlap of only 15 years (1986–2000) between the statistical downscaling model calibration period (1986–2005) and the years of the coupled climate model historical runs (1961–2000). 
· Given this hypothesis, the summer and winter Nonhomogeneous Hidden Markov Models (NHMMs) were re-calibrated using predictor series centred on the full 1961–2000 period. Correspondingly, research in an associated eWater project involving a new assessment of Bureau of Meteorology daily rainfall records found possible suspect daily data in parts of records for 11 of the 30 stations (Andrew Frost, pers. comm.). These stations were replaced with nearby stations assessed as high quality (Table A1 in Appendix A). Thus the final NHMM selection changed from that previously reported; it used the same predictors but had changes in the station network resulting in a 5-state summer model (previously a 6-state model was selected). The weather-state patterns of these newly calibrated NHMMs are shown in Appendix A. 
· The daily predictor time-series for the 20th century runs (1961–2000) of the selected GCMs were extracted and used to drive the newly calibrated statistical downscaling models (i.e. calibrated using NNR predictors centred on the 1961–2000 period). This produced 100 stochastic realisations of the daily rainfall series at the 30 stations, conditional on the single predictor time-series from each coupled climate model.
· Comparison of the new NNR and coupled climate model downscaled multi-site annual precipitation simulations showed much better agreement (results are discussed above). This highlights the importance of assessing the method used to account for biases in GCM predictors, which is an active and rapidly evolving area of international research. 
· These realisations were compared with corresponding observed (station) and NNR-downscaled rainfall series in terms of their temporal evolution and variability across time-scales. 
Summary of links to other projects

Results from this project: 
· We have provided a benchmark for comparison with the analysis undertaken in Project 2.1.4 “Evaluation of stochastically downscaled projections”. 

· Work would benefit from comparison with Projects 1.5.1 and 1.5.4, which involve statistical and dynamical downscaling of coupled climate model historical runs, respectively. 

· Comparison with Project 1.5.1: International experience recommends application of multiple downscaling techniques (e.g. the inter-comparison of statistical, dynamical, and statistical–dynamical downscaling methods undertaken in the European Framework Project STARDEX: http://www.cru.uea.ac.uk/projects/stardex/reports/STARDEX_FINAL_
REPORT.pdf ). Accordingly, assessment of the consistency between the results from this projects and Project 1.5.1 is planned. There are significant differences between the projects, as this project focuses in greater detail on the drivers of rainfall over the south-eastern corner of the Murray–Darling Basin and selects only GCMs previously assessed to perform well in terms of the predictors required for statistical downscaling. 

Publications arising from this project
None to date.
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Project Milestone Reporting Table

	To be completed prior to commencing the project
	Completed at each Milestone date

	Milestone description1


	Performance indicators2


	Completion date3

	Budget4 for Milestone

($) (SEACI contribution)
	Progress5

	Recommended changes to workplan6


	1. Extract atmospheric fields from coupled climate model historical runs
	· Climate model runs selected

· Codes modified to work with the selected runs

· Codes used to extract fields required to derive SD predictors
	30/06/08
	
	Completed
	N/A

	2. Assess coupled climate model predictors against reanalysis predictors
	· Predictor temporal evolution and variability (daily to inter-decadal) documented (3–4 page report and figures)
	30/06/08
	
	Completed 

(this report encompasses the 3–4 page report)
	N/A

	3. Drive fitted statistical downscaling models with coupled climate model historical run predictors. 
	· Input predictor files produced for SD models

· Multiple realisations of multi-site daily rainfall for period of runs produced 
	31/12/08
	
	Completed
	N/A

	4. Compare downscaled precipitation and weather state time-series with re-analyses downscaled and observed
	· Inter-comparison report (5–6 page report) 
	31/12/08
	
	Completed 

(this report encompasses the 5–6 page report)
	N/A


APPENDIX A:  RECALIBRATED NHMMs
Table A1:  Revised 30-station network (new stations highlighted in yellow)
	Number
	BoM No.
	BoM Name
	Latitude (oS)
	Longitude (oE)

	1
	49048
	BALRANALD (TILLARA)    
	-34.64
	143.05

	2
	70014
	CANBERRA AIRPORT       
	-35.30
	149.20

	3
	70028
	YASS (DERRINGULLEN)        
	-34.74
	148.89

	4
	70054
	COOMA (KIAORA)            
	-36.20
	149.06

	5
	72023
	HUME RESERVOIR          
	-36.10
	147.03

	6
	72101
	HOLBROOK (NARRABILLA)
	-35.71
	147.49

	7
	72146
	ALBURY AIRPORT
	-36.07
	146.96

	8
	72150
	WAGGA WAGGA AMO          
	-35.16
	147.46

	9
	73007
	BURRINJUCK DAM            
	-35.00
	148.60

	10
	73051
	MURRINGO (WINDERMERE)   
	-34.21
	148.55

	11
	74087
	URANA (NOWRANIE)          
	-35.33
	146.03

	12
	74205
	BELFRAYDEN (NORTH MAYFIELD)
	-35.16
	147.03

	13
	75012
	WAKOOL (CALIMO)         
	-35.42
	144.60

	14
	75049
	MAUDE (NAP NAP)         
	-34.45
	144.17

	15
	75054
	CONARGO (PUCKAWIDGEE)    
	-35.28
	145.21

	16
	75056
	BOOROORBAN (RAMSAY)
	-34.94
	144.74

	17
	77001
	QUAMBATOOK (BARRAPORT NORTH)  
	-35.98
	143.65

	18
	77025
	LAKE BOGA
	-35.46
	143.63

	19
	80015
	ECHUCA AERODROME
	-36.17
	144.76

	20
	81008
	COLBINABBIN
	-36.53
	144.77

	21
	81019
	NAGAMBIE (GOULBURN WEIR)    
	-36.72
	145.17

	22
	81116
	CHESNEY VALE (LAKE MOKOAN NO 1)
	-36.46
	146.02

	23
	82002
	BENALLA (SHADFORTH STREET)     
	-36.55
	145.97

	24
	82068
	MITTA MITTA FORESTRY
	-36.53
	147.37

	25
	83010
	EUROBIN            
	-36.64
	146.86

	26
	83025
	OMEO COMPARISON
	-37.10
	147.60

	27
	88011
	CAMPBELLTOWN            
	-37.22
	143.96

	28
	88023
	LAKE EILDON
	-37.23
	145.91

	29
	88042
	MALMSBURY RESERVOIR        
	-37.20
	144.37

	30
	88060
	KINGLAKE WEST (WALLABY CREEK)  
	-37.45
	145.21
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Figure A1:  Probability of precipitation occurrence at the 30 stations for 5-state summer (Nov–Mar) NHMM. Left column shows probability as proportional to the size of circle; other columns show corresponding composite atmospheric fields. 
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Figure A2:  Probability of precipitation occurrence at the 30 stations for 5-state winter (Apr–Oct) NHMM. Left column shows probability as proportional to the size of circle, and other columns show corresponding composite atmospheric fields.

APPENDIX B:  GCM ATMOSPHERIC PREDICTOR DIAGNOSTICS

Figure B1:  Boxplots of predictor distributions
(a) Sea-Level Pressure (Summer)
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(b) Dew-Point Temperature Depression at 700 hPa (Summer)
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(c) Geopotential Height E–W Gradient at 500 hPa (Summer)
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(d) Sea-Level Pressure North–South Gradient (Winter)
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(e) Dew-Point Temperature Depression at 700 hPa (Winter)

[image: image12.emf]CCAM GFDL MK35 MRI NNR

-2

-1

0

1

2

3

Dew Point Temperature at 700hPa


(f) Dew-Point Temperature Depression at 850 hPa (Winter)
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(g) Geopotential Height North–South Gradient at 700 hPa (Winter)
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Figure B2:  Predictor Time-Series
(a) Sea-Level Pressure (Summer)
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(b) Dew-Point Temperature Depression at 700 hPa (Summer)
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(c) Geopotential Height East–West Gradient at 500 hPa (Summer)
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(d)  Sea-Level Pressure North–South Gradient (Winter)
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(e) Dew-Point Temperature Depression at 700 hPa (Winter)
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(f) Dew-Point Temperature Depression at 850 hPa (Winter)
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(g) Geopotential Height North–South Gradient at 700 hPa (Winter)
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APPENDIX C:  DOWNSCALED RAINFALL DIAGNOSTICS 
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Figure C1:  Observed and downscaled mean areal annual rainfall 1961–2000.
